Copied to
clipboard

G = C42:5F5order 320 = 26·5

2nd semidirect product of C42 and F5 acting via F5/D5=C2

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C42:5F5, (C4xC20):4C4, C5:(C42:5C4), (C4xDic5):22C4, (D5xC42).17C2, D10.24(C4oD4), D10.3Q8.5C2, C10.8(C42:C2), (C22xF5).3C22, C22.68(C22xF5), D5.1(C42:2C2), (C22xD5).267C23, C2.11(D10.C23), (C2xC4).102(C2xF5), (C2xC20).102(C2xC4), (C2xC4xD5).362C22, (C2xC10).28(C22xC4), (C2xDic5).176(C2xC4), SmallGroup(320,1028)

Series: Derived Chief Lower central Upper central

C1C2xC10 — C42:5F5
C1C5D5D10C22xD5C22xF5D10.3Q8 — C42:5F5
C5C2xC10 — C42:5F5
C1C22C42

Generators and relations for C42:5F5
 G = < a,b,c,d | a4=b4=c5=d4=1, ab=ba, ac=ca, dad-1=ab2, bc=cb, dbd-1=a2b-1, dcd-1=c3 >

Subgroups: 570 in 138 conjugacy classes, 50 normal (9 characteristic)
C1, C2, C2, C4, C22, C22, C5, C2xC4, C2xC4, C23, D5, C10, C42, C42, C22xC4, Dic5, C20, F5, D10, C2xC10, C2.C42, C2xC42, C4xD5, C2xDic5, C2xC20, C2xF5, C22xD5, C42:5C4, C4xDic5, C4xC20, C2xC4xD5, C22xF5, D10.3Q8, D5xC42, C42:5F5
Quotients: C1, C2, C4, C22, C2xC4, C23, C22xC4, C4oD4, F5, C42:C2, C42:2C2, C2xF5, C42:5C4, C22xF5, D10.C23, C42:5F5

Smallest permutation representation of C42:5F5
On 80 points
Generators in S80
(1 51 11 41)(2 52 12 42)(3 53 13 43)(4 54 14 44)(5 55 15 45)(6 56 16 46)(7 57 17 47)(8 58 18 48)(9 59 19 49)(10 60 20 50)(21 71 31 61)(22 72 32 62)(23 73 33 63)(24 74 34 64)(25 75 35 65)(26 76 36 66)(27 77 37 67)(28 78 38 68)(29 79 39 69)(30 80 40 70)
(1 26 6 21)(2 27 7 22)(3 28 8 23)(4 29 9 24)(5 30 10 25)(11 36 16 31)(12 37 17 32)(13 38 18 33)(14 39 19 34)(15 40 20 35)(41 66 46 61)(42 67 47 62)(43 68 48 63)(44 69 49 64)(45 70 50 65)(51 76 56 71)(52 77 57 72)(53 78 58 73)(54 79 59 74)(55 80 60 75)
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25)(26 27 28 29 30)(31 32 33 34 35)(36 37 38 39 40)(41 42 43 44 45)(46 47 48 49 50)(51 52 53 54 55)(56 57 58 59 60)(61 62 63 64 65)(66 67 68 69 70)(71 72 73 74 75)(76 77 78 79 80)
(1 61 6 66)(2 63 10 69)(3 65 9 67)(4 62 8 70)(5 64 7 68)(11 71 16 76)(12 73 20 79)(13 75 19 77)(14 72 18 80)(15 74 17 78)(21 51 26 56)(22 53 30 59)(23 55 29 57)(24 52 28 60)(25 54 27 58)(31 41 36 46)(32 43 40 49)(33 45 39 47)(34 42 38 50)(35 44 37 48)

G:=sub<Sym(80)| (1,51,11,41)(2,52,12,42)(3,53,13,43)(4,54,14,44)(5,55,15,45)(6,56,16,46)(7,57,17,47)(8,58,18,48)(9,59,19,49)(10,60,20,50)(21,71,31,61)(22,72,32,62)(23,73,33,63)(24,74,34,64)(25,75,35,65)(26,76,36,66)(27,77,37,67)(28,78,38,68)(29,79,39,69)(30,80,40,70), (1,26,6,21)(2,27,7,22)(3,28,8,23)(4,29,9,24)(5,30,10,25)(11,36,16,31)(12,37,17,32)(13,38,18,33)(14,39,19,34)(15,40,20,35)(41,66,46,61)(42,67,47,62)(43,68,48,63)(44,69,49,64)(45,70,50,65)(51,76,56,71)(52,77,57,72)(53,78,58,73)(54,79,59,74)(55,80,60,75), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55)(56,57,58,59,60)(61,62,63,64,65)(66,67,68,69,70)(71,72,73,74,75)(76,77,78,79,80), (1,61,6,66)(2,63,10,69)(3,65,9,67)(4,62,8,70)(5,64,7,68)(11,71,16,76)(12,73,20,79)(13,75,19,77)(14,72,18,80)(15,74,17,78)(21,51,26,56)(22,53,30,59)(23,55,29,57)(24,52,28,60)(25,54,27,58)(31,41,36,46)(32,43,40,49)(33,45,39,47)(34,42,38,50)(35,44,37,48)>;

G:=Group( (1,51,11,41)(2,52,12,42)(3,53,13,43)(4,54,14,44)(5,55,15,45)(6,56,16,46)(7,57,17,47)(8,58,18,48)(9,59,19,49)(10,60,20,50)(21,71,31,61)(22,72,32,62)(23,73,33,63)(24,74,34,64)(25,75,35,65)(26,76,36,66)(27,77,37,67)(28,78,38,68)(29,79,39,69)(30,80,40,70), (1,26,6,21)(2,27,7,22)(3,28,8,23)(4,29,9,24)(5,30,10,25)(11,36,16,31)(12,37,17,32)(13,38,18,33)(14,39,19,34)(15,40,20,35)(41,66,46,61)(42,67,47,62)(43,68,48,63)(44,69,49,64)(45,70,50,65)(51,76,56,71)(52,77,57,72)(53,78,58,73)(54,79,59,74)(55,80,60,75), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40)(41,42,43,44,45)(46,47,48,49,50)(51,52,53,54,55)(56,57,58,59,60)(61,62,63,64,65)(66,67,68,69,70)(71,72,73,74,75)(76,77,78,79,80), (1,61,6,66)(2,63,10,69)(3,65,9,67)(4,62,8,70)(5,64,7,68)(11,71,16,76)(12,73,20,79)(13,75,19,77)(14,72,18,80)(15,74,17,78)(21,51,26,56)(22,53,30,59)(23,55,29,57)(24,52,28,60)(25,54,27,58)(31,41,36,46)(32,43,40,49)(33,45,39,47)(34,42,38,50)(35,44,37,48) );

G=PermutationGroup([[(1,51,11,41),(2,52,12,42),(3,53,13,43),(4,54,14,44),(5,55,15,45),(6,56,16,46),(7,57,17,47),(8,58,18,48),(9,59,19,49),(10,60,20,50),(21,71,31,61),(22,72,32,62),(23,73,33,63),(24,74,34,64),(25,75,35,65),(26,76,36,66),(27,77,37,67),(28,78,38,68),(29,79,39,69),(30,80,40,70)], [(1,26,6,21),(2,27,7,22),(3,28,8,23),(4,29,9,24),(5,30,10,25),(11,36,16,31),(12,37,17,32),(13,38,18,33),(14,39,19,34),(15,40,20,35),(41,66,46,61),(42,67,47,62),(43,68,48,63),(44,69,49,64),(45,70,50,65),(51,76,56,71),(52,77,57,72),(53,78,58,73),(54,79,59,74),(55,80,60,75)], [(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25),(26,27,28,29,30),(31,32,33,34,35),(36,37,38,39,40),(41,42,43,44,45),(46,47,48,49,50),(51,52,53,54,55),(56,57,58,59,60),(61,62,63,64,65),(66,67,68,69,70),(71,72,73,74,75),(76,77,78,79,80)], [(1,61,6,66),(2,63,10,69),(3,65,9,67),(4,62,8,70),(5,64,7,68),(11,71,16,76),(12,73,20,79),(13,75,19,77),(14,72,18,80),(15,74,17,78),(21,51,26,56),(22,53,30,59),(23,55,29,57),(24,52,28,60),(25,54,27,58),(31,41,36,46),(32,43,40,49),(33,45,39,47),(34,42,38,50),(35,44,37,48)]])

44 conjugacy classes

class 1 2A2B2C2D2E2F2G4A···4F4G···4L4M···4T 5 10A10B10C20A···20L
order122222224···44···44···4510101020···20
size111155552···210···1020···2044444···4

44 irreducible representations

dim111112444
type+++++
imageC1C2C2C4C4C4oD4F5C2xF5D10.C23
kernelC42:5F5D10.3Q8D5xC42C4xDic5C4xC20D10C42C2xC4C2
# reps16162121312

Matrix representation of C42:5F5 in GL6(F41)

40390000
110000
009000
000900
000090
000009
,
3200000
0320000
0022033
003819380
000381938
0033022
,
100000
010000
0040404040
001000
000100
000010
,
40390000
010000
003402727
002727034
00147140
00734347

G:=sub<GL(6,GF(41))| [40,1,0,0,0,0,39,1,0,0,0,0,0,0,9,0,0,0,0,0,0,9,0,0,0,0,0,0,9,0,0,0,0,0,0,9],[32,0,0,0,0,0,0,32,0,0,0,0,0,0,22,38,0,3,0,0,0,19,38,3,0,0,3,38,19,0,0,0,3,0,38,22],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,40,1,0,0,0,0,40,0,1,0,0,0,40,0,0,1,0,0,40,0,0,0],[40,0,0,0,0,0,39,1,0,0,0,0,0,0,34,27,14,7,0,0,0,27,7,34,0,0,27,0,14,34,0,0,27,34,0,7] >;

C42:5F5 in GAP, Magma, Sage, TeX

C_4^2\rtimes_5F_5
% in TeX

G:=Group("C4^2:5F5");
// GroupNames label

G:=SmallGroup(320,1028);
// by ID

G=gap.SmallGroup(320,1028);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,56,477,120,1094,184,6278,1595]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=c^5=d^4=1,a*b=b*a,a*c=c*a,d*a*d^-1=a*b^2,b*c=c*b,d*b*d^-1=a^2*b^-1,d*c*d^-1=c^3>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<